Cortical representation of auditory space: information-bearing features of spike patterns.

نویسندگان

  • Shigeto Furukawa
  • John C Middlebrooks
چکیده

Previous studies have demonstrated that the spike patterns of cortical neurons vary systematically as a function of sound-source location such that the response of a single neuron can signal the location of a sound source throughout 360 degrees of azimuth. The present study examined specific features of spike patterns that might transmit information related to sound-source location. Analysis was based on responses of well-isolated single units recorded from cortical area A2 in alpha-chloralose-anesthetized cats. Stimuli were 80-ms noise bursts presented from loudspeakers in the horizontal plane; source azimuths ranged through 360 degrees in 20 degrees steps. Spike patterns were averaged across samples of eight trials. A competitive artificial neural network (ANN) identified sound-source locations by recognizing spike patterns; the ANN was trained using the learning vector quantization learning rule. The information about stimulus location that was transmitted by spike patterns was computed from joint stimulus-response probability matrices. Spike patterns were manipulated in various ways to isolate particular features. Full-spike patterns, which contained all spike-count information and spike timing with 100-micros precision, transmitted the most stimulus-related information. Transmitted information was sensitive to disruption of spike timing on a scale of more than approximately 4 ms and was reduced by an average of approximately 35% when spike-timing information was obliterated entirely. In a condition in which all but the first spike in each pattern were eliminated, transmitted information decreased by an average of only approximately 11%. In many cases, that condition showed essentially no loss of transmitted information. Three unidimensional features were extracted from spike patterns. Of those features, spike latency transmitted approximately 60% more information than that transmitted either by spike count or by a measure of latency dispersion. Information transmission by spike patterns recorded on single trials was substantially reduced compared with the information transmitted by averages of eight trials. In a comparison of averaged and nonaveraged responses, however, the information transmitted by latencies was reduced by only approximately 29%, whereas information transmitted by spike counts was reduced by 79%. Spike counts clearly are sensitive to sound-source location and could transmit information about sound-source locations. Nevertheless, the present results demonstrate that the timing of the first poststimulus spike carries a substantial amount, probably the majority, of the location-related information present in spike patterns. The results indicate that any complete model of the cortical representation of auditory space must incorporate the temporal characteristics of neuronal response patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of Auditory Space by Cortical Neurons in Awake and Anesthetized Cats

Representation of Auditory Space by Cortical Neurons in Awake and Anesthetized Cats by Brian James Mickey Chair: John C. Middlebrooks The auditory cortex is known to be essential for normal sound localization behavior, yet we lack a complete understanding of how auditory space is represented by the activity of auditory cortical neurons. To investigate this representation, we presented sounds fr...

متن کامل

Diverse cortical codes for scene segmentation in primate auditory cortex.

The temporal coherence of amplitude fluctuations is a critical cue for segmentation of complex auditory scenes. The auditory system must accurately demarcate the onsets and offsets of acoustic signals. We explored how and how well the timing of onsets and offsets of gated tones are encoded by auditory cortical neurons in awake rhesus macaques. Temporal features of this representation were isola...

متن کامل

Encoding of Temporal Information by Timing, Rate, and Place in Cat Auditory Cortex

A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1...

متن کامل

Representation of auditory space by cortical neurons in awake cats.

We evaluated the spatial selectivity of auditory cortical neurons in awake cats. Single- and multiunit activity was recorded in primary auditory cortex as the animals performed a nonspatial auditory discrimination or sat idly. Their heads were unrestrained, and head position was tracked. Broadband sounds were delivered from locations throughout 360 degrees on the horizontal plane, and source lo...

متن کامل

Cortical speech-evoked response patterns in multiple auditory fields are correlated with behavioral discrimination ability.

Different speech sounds evoke unique patterns of activity in primary auditory cortex (A1). Behavioral discrimination by rats is well correlated with the distinctness of the A1 patterns evoked by individual consonants, but only when precise spike timing is preserved. In this study we recorded the speech-evoked responses in the primary, anterior, ventral, and posterior auditory fields of the rat ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 4  شماره 

صفحات  -

تاریخ انتشار 2002